

Objectives:

- Introduction
- Create matrices
- Index/Subset matrix
- > More about matrix
- > Applications of R matrices

INTRODUCTION.....

A matrix is a rectangular array of data elements, arranged in rows and columns. Matrices in R are homogenous i.e., they can hold a single type of data. In the first section, we look at various methods of creating matrices in R.

Creating Matrix.....

The easiest way to create a matrix in R is to use the matrix() function.

Console Terminal X Jobs X	Console Terminal × Jobs ×
~/ 🖈	~/
<pre>> #Form a matrix of order 2*3 using the elements 1,4,7,2,5,8 > m<-matrix(c(1,4,7,2,5,8),2,3) > m #display the matrix [,1] [,2] [,3] [1,] 1 7 5 [2,] 4 2 8 > </pre>	<pre>> #Form a matrix of order 2*3 using the elements 1,3,4,2,5,8,6,9 > m<-matrix(data=c(1,3,4,2,5,8,6,9), nrow=2,ncol=4) > m #display the matrix [,1] [,2] [,3] [,4] [1,] 1 4 5 6 [2,] 3 2 8 9 > </pre>

cbind and rbind

		·C(I,/			
> m	at2<-	-c(9,8	8,7,6	5)	
> #	merge	e vect	tor d	colur	nn wise
> m	atcb<	<-cbi	nd(ma	at1,r	nat2)
> m	atcb				
	mat1 mat2				
[1,]	1	9		
[2,]	2	8		
[3,]	3	7		
[4,]	4	6		
> #	merge	e vect	tor i	row N	wise
> m	atrĎ<	-rbi	nd(ma	at1,r	nat2)
> m	atrb				
	[,1	L] [,:	2] [,3]	[,4]
mat		1	2	3	4
mat	2	9	8	7	6

These functions are used to form a matrix using two or more vectors. cbind and rbind append the vectors columnwise and rowwise respectively.

How to convert a list into a matrix?

as.matrix is used to coerce a data structure to the type matrix. Therefore, a list can also be changed into matrix by using as.matrix() command.

	Console 1	「erminal ×	Jobs ×
	~/ 🖈		
	> 1<-115	t(x=c(3,4	2,0),y=1:3,z=c(4,5,6))
	\$x [1] 3 2	0	
	\$y	_	
	[1] 1 2	3	
	\$z [1] 4 5	6	
	> z=as.da	ata.frame	e(1)
ALL AND	> z x y z		
	1 3 1 4 2 2 2 5		
	3036		
	> w=as.ma > w	atrix(z)	
	x y [1,] 3 1	Z	
	[2,] 2 2	5	
	[3,] 0 3 >	6	
	-		

Index/Subset Matrices

 The [] operator can be used to index the elements but since matrices are 2D, we need to specify both row number and column number.

```
Terminal ×
                 Jobs ×
Console
 ~/ ?
> m<-matrix(data=1:8,4,2)</pre>
> m[1,]#display first row
[1] 1 5
> m[,1]#display 1st column
[1] 1 2 3 4
> m[c(1,3),]#display all elements 1st and 3rd column
     [,1] [,2]
[1,]
        1
[2,]
        3
> m[-1,c(1,2)]#display elements of 1st and 2nd column in all rows except 1st row
     [,1] [,2]
       2
[1,]
            6
     3 7
[2,]
[3.]
        4
             8
> sort(m[1,])#elements of 1st row in ascending order
[1] 1 5
> sort(m[,2])#elements of 2nd column in ascending order
[1] 5 6 7 8
> rev(sort(m[1,]))#elements of 1st row in descending order
[1] 5 1
> rev(sort(m[,1]))#elements of 1st column in descending order
[1] 4 3 2 1
>
```

More about Matrices

Command for any matrix

Command for a square matrix

```
Console
                                                                              Terminal ×
                                                                                          Jobs \times
       Terminal ×
Console
                Jobs ×
                                                                       ~1 0
~1 0
                                                                     > m<-matrix(data=c(1,2,5,7),2,2)</pre>
                                                                      > solve(m)# gives inverse of matrix
> m<-matrix(data=1:8,4,2)
                                                                                                [,2]
                                                                                   .11
> rowSums(m)#use to find sum of each row in a matrix
                                                                      [1.] -2.3333333
                                                                                        1.6666667
   6 8 10 12
[1]
                                                                            0.6666667 -0.3333333
                                                                      [2.]
                                                                      > eigen(m)#gives eigenvalues and eigenvectors
> rowMeans(m)#use to find mean of each row in a matrix
                                                                      eigen() decomposition
[1] 3 4 5 6
                                                                      $values
> colSums(m)#use to find sum of each column in a matrix
                                                                          8.3588989 -0.3588989
                                                                      Γ17
[1] 10 26
> colMeans(m)#use to find mean of each column in a matrix
                                                                      $vectors
                                                                                   [,1]
                                                                                               [,2]
[1] 2.5 6.5
                                                                      [1.] -0.5619986 -0.9649955
> mean(m)
                                                                      [2,] -0.8271382 0.2622663
[1] 4.5
                                                                     > det(m)# used to find determinant of matrix
> sd(m)
                                                                      [1] -3
[1] 2.44949
                                                                      > t(m)#gives transpose of matrix
> var(m)
                                                                            [,1] [,2]
                 [,2]
         [,1]
                                                                      [1,]
                                                                                     2
                                                                      [2,]
                                                                               5
[1.] 1.666667 1.666667
                                                                      >
[2,] 1.666667 1.666667
```

Changing Row names and Column names

rownames() and colnames() are the commands that are used to add row names and column names of a matrix.

```
Console Terminal ×
                 Jobs X
 NR
> m<-matrix(c(1,5,3,8,9,7),2,3)
> M
     [,1] [,2] [,3]
[1,]
[2.]
> rownames(m)<-c("Vanilla","Strawberry")#2 rows define 2 names</pre>
> m
            [,1] [,2] [,3]
Vanilla
Strawberry
> colnames(m)<-c("Respberry", "Butterscotch", "Blackforest")</pre>
> m
           Respberry Butterscotch Blackforest
Vanilla
Strawberry
```

• • • • • • • • • • • •

Applications

- In geology, matrices are used for taking surveys and also used for plotting graphs.
- In robotics and communication, matrices are the best elements for robotic movements.
- Matrices are used in calculating the gross domestic products in economics.
- ✓ In physical, matrices can be applied in study of an electrical circuit.

~ By Chetna Mehra~ Mat/19/9