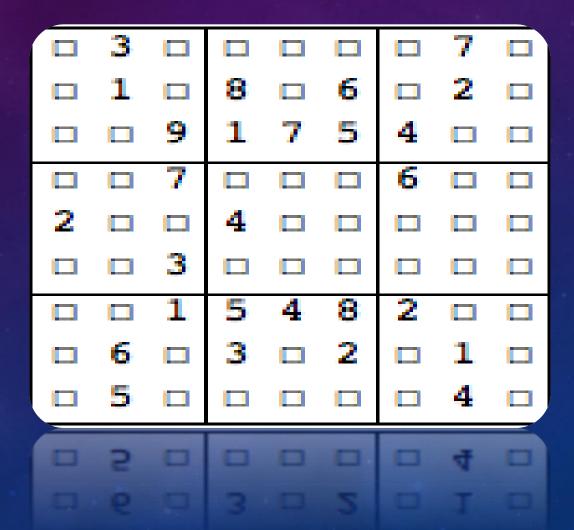
NAME – ISHIKA GOEL

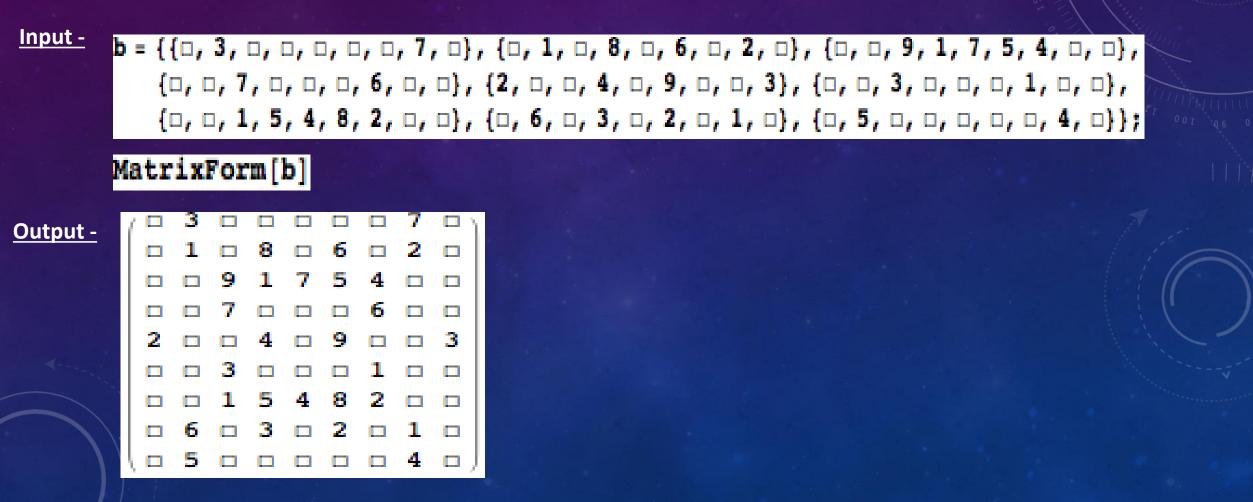
<u>UNIVERSITY ROLL NO</u> – 19044563039

COLLEGE ROLL NO – MAT/19/93

COURSE NAME – B.SC(HONS)MATHEMATICS


SUDOKU ON MATHEMATICA

9	2	5	6	3	1	8	4	7
6	1	8	5	7	4	2	9	3
3	7	4	9	8	2	5	6	1
7	4	9	8	2	6	1	3	5
8	5	2	4	1	3	9	7	6
1	6	3	7	9	5	4	8	2
2	8	7	3	5	9	6	1	4
4	9	1	2	6	7	3	5	8
5	3	6	1	4	8	7	2	9
4	9	1	_		7		1 5 2	8


Sudoku, for those unfamiliar with this puzzle, consists of a 9X9 square grid with nine 3X3 subgrids. The 81 entries are to be filled with the integers 1 to 9 in such a way that each row, column and subgrid contains all the nine integers. Some of the entries are already chosen, and the final puzzle solution must contain these initial choices.

We will work on the <u>making</u> and then <u>solving</u> the below Sudoku

FIRST STEPS TO SOLVING SUDOKU

The input for this puzzle is a list of nine lists consisting of blanks (shown as □) or integers between 1 and 9. A list of lists of the same length is regarded as a matrix in Mathematica, so we input for the puzzle and then show it in matrix form.

WE CAN ALSO DISPLAY THIS IN SUDOKU FORMAT BY DRAWING

COLUMN AND ROW LINES AND A FRAME

Input -

display[X_] := Grid[Map[If[ListQ@#, Row[#], #] &, X, {2}],
Frame → True, Dividers →

{{True, False, False, True, False, False, True, False},

{True, False, False, True, False, False, True, False}}, FrameStyle → Directive[Red, Dotted]]

display[b]

<u>Output -</u>

	3						7		ļ
	1		8		6		2		ł
		9	1	7	5	4			ł
		7				6			
2			4		9			3	ł
		3				1			ł
		1	5	4	8	2			
	6		3		2		1		ł
	5						4		ļ

Commands used-

- <u>Grid</u> [{ $\{expr_{11}, expr_{12}, ...\}, \{expr_{21}, expr_{22}, ...\}, ...\}$] is an object that formats with the $expr_{ij}$ arranged in a two-dimensional grid
- <u>Map</u> represents an operator form of <u>Map</u> that can be applied to an expression.
- <u>ListQ[*expr*]</u> gives <u>True</u> if the head of *expr* is <u>List</u>, and <u>False</u> otherwise.
- **Frame** -is an option for <u>Graphics</u>, <u>Grid</u>, and other constructs that specifies whether to include a frame.
- <u>**Dividers**</u> is an option for <u>Grid</u> and related constructs that specifies where and how to draw divider lines.
- **<u>FrameStyle</u>** -is an option for <u>Graphics</u>, <u>Grid</u>, and other constructs that specifies the style in which to draw frames.
- <u>**# and & -**</u> The **#** symbol serves as the placeholder for the variable, while the & symbol precedes the value you wish to substitute into the function.
- <u>If</u> If[*condition*,*t*,*f*] gives *t* if *condition* evaluates to <u>True</u>, and *f* if it evaluates to <u>False</u>.

<u>Now we will define a function</u> *block[x_, i_,j_]* that gives a list of the entries that comprise the block of X[[i,j]] in X.

Input -

block[X_, i_, j_] := Which[$1 \le i \le 3 \&\& 1 \le j \le 3$, Take[X, {1, 3}, {1, 3}], $4 \le i \le 6 \&\& 1 \le j \le 3$, Take[X, {4, 6}, {1, 3}], $7 \le i \le 9 \&\& 1 \le j \le 3$, Take[X, {7, 9}, {1, 3}], $1 \le i \le 3 \&\& 4 \le j \le 6$, Take[X, {1, 3}, {4, 6}], $4 \le i \le 6 \&\& 4 \le j \le 6$, Take[X, {1, 3}, {4, 6}], $7 \le i \le 9 \&\& 4 \le j \le 6$, Take[X, {4, 6}, {4, 6}], $1 \le i \le 3 \&\& 7 \le j \le 9$, Take[X, {1, 3}, {7, 9}], $4 \le i \le 6 \&\& 7 \le j \le 9$, Take[X, {4, 6}, {7, 9}], $7 \le i \le 9 \&\& 7 \le j \le 9$, Take[X, {4, 6}, {7, 9}]]

 $c = ReplaceAll[b, \Box \rightarrow Range[9]]$

display[c]

display[c]

<u>Command Used –</u>

- <u>Which</u>[$test_1$, $value_1$, $test_2$, $value_2$,...] evaluates each of the $test_i$ in turn, returning the value of the $value_i$ corresponding to the first one that yields <u>True</u>.
- <u>**Take**[*list*, *seq*₁, *seq*₂,...] gives a nested list in which elements specified by seq_i are taken at level *i* in *list*.</u>
- $\underline{\&\&}$ $e_1\&\&e_2\&\&...$ is the logical AND function. It evaluates its arguments in order, giving <u>False</u> immediately if any of them are <u>False</u>, and <u>True</u> if they are all <u>True</u>
- **<u>ReplaceAll</u>** applies a rule or list of rules in an attempt to transform each subpart of an expression *expr*.
- **<u>Range</u>** <u>Range</u> $[i_{max}]$ generates the list $\{1, 2, ..., i_{max}\}$.

 $c = ReplaceAll[b, \Box \rightarrow Range[9]]$

Output -

Out[= {{{1, 2, 3, 4, 5, 6, 7, 8, 9}, 3, {1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2

	123456789	3	123456789	123456789	123456789	123456789	123456789	7	123456789
	123456789	1	123456789	8	123456789	6	123456789	2	123456789
	123456789	123456789	9	1	7	5	4	123456789	123456789
	123456789	123456789	7	123456789	123456789	123456789	6	123456789	123456789
Out[=]=	2	123456789	123456789	4	123456789	9	123456789	123456789	3
1 7	123456789	123456789	3	123456789	123456789	123456789	1	123456789	123456789
	123456789	123456789	1	5	4	8	2	123456789	123456789
	123456789	6	123456789	3	123456789	2	123456789	1	123456789
	123456789	5	123456789	123456789	123456789	123456789	123456789	4	123456789

 123456789
 6
 123456789
 3
 123456789
 2
 123456789
 1
 123456789

 123456789
 5
 123456789
 123456789
 123456789
 123456789
 123456789
 4
 123456789

Our next task is to start eliminating candidate values in the entries that are lists of numbers in X, proceeding one entry X[[i, j]] at a time

```
DeleteSingletonsFromLists[X_] := Module[{A = X, integers},
Table[
    integers = Select[
        Join[A[[i]], A[[All, j]], Flatten[block[A, i, j], 1]],
        IntegerQ[#] &
    ];
    If[ListQ[A[[i, j]]], A[[i, j]] = Complement[A[[i, j]], integers]];
    If[Length[A[[i, j]]] = 1, A[[i, j]] = First[A[[i, j]]]],
        {i, 9}, {j, 9}];
    A]
```

DeleteSingletonsFromLists[c] // display

4568	3	24568	29	29	4	589	7	15689
457	1	45	8	39	6	359	2	59
68	28	9	1	7	5	4	368	68
14589	489	7	2	1358	13	6	589	4589
2	8	56	4	156	9	57	5	3
4569	49	3	67	568	7	1	89	2489
379	79	1	5	4	8	2	369	679
4789	6	48	3	9	2	578	1	578
3789	5	28	67	16	1	3789	4	6789

Command Used -

- **Module**[$\{x=x_0,...\},expr$]-defines initial values for x,
- Join [*list*₁,*list*₂,...,*n*] -joins the objects at level *n* in each of the *list*_i
- **<u>Flatten</u>**[*list*,*n*]-flattens to level *n*.
- <u>ListQ[expr]</u>- gives <u>True</u> if the head of *expr* is <u>List</u>, and <u>False</u> otherwise
- **<u>Complement</u>** $[e_{all}, e_1, e_2, ...]$ -gives the elements in e_{all} that are not in any of the e_i .
- **Length**[*expr*]-gives the number of elements in *expr*
- <u>**First**</u>[*expr,def*]- gives the first element if it exists, or *def* otherwise
- <u>**Table**</u>[*expr*,*n*]- generates a list of *n* copies of *expr*.

To apply **DeletesingletonsFromLists** again and again to **C** until the result no longer changes,

We use FixedPoint

Input -

(d = FixedPoint[DeleteSingletonsFromLists, c]) // display

Output-

	568	3	58	9	2	4	58	7	1568
	457	1	45	8	3	6	59	2	59
	68	2	9	1	7	5	4	368	68
	1459	49	7	2	58	3	6	89	489
Out[=]=	2	8	6	4	1	9	7	5	3
[]	459	49	3	6	58	7	1	89	2489
	379	79	1	5	4	8	2	369	679
	478	6	48	3	9	2	58	1	578
	389	.5	28	7	6	1	389	4	89
Out[=]=	379 478	49 79 6	3 1 48	6 5 3	58 4 9	7 8 2	2 58	89 369 1	2489 679 578

Command Used –

- **FixedPoint**[*f*,*expr*] starts with *expr*, then applies *f* repeatedly until the result no longer changes.
- <u>//</u> These notations extend to any function and any kind of argument:

but we see that we are still not done!

However, the first block has three entries (non –dotted red box) that are all sublists of {5,6,8}.

However, the first block has three entries (non - dotted red box) that are all sublists of

While we do not know the exact value of any of the red entries, we know that the three numbers 5, 6 and 8 will be used up filling them; thus we can remove 5, 6 and 8 from the *other* entries in this block (non – dotted green box).

Similarly, in the first row, there are three entries that are sublists of {5,6,8}, so we remove 5, 6 and 8 from {1,5,6,8}, at the end of row 1; this defines e .

568	3	58	9	2	4	58	7	1568
457	1	45	8	3	6	59	2	59
68	2	9	1	7	5	4	368	68
1459	49	7	2	58	3	6	89	489
2	8	6	4	1	9	7	5	3
459	49	3	6	58	7	1	89	2489
379	79	1	5	4	8	2	369	679
478	6	48	3	9	2	58	1	578
389	5	28	7	6	1	389	4	89

568	3	58	9	2	4	58	7	1
47	1	4	8	3	6	59	2	59
68	2	9	1	7	5	4	368	68
1459	49	7	2	58	3	6	89	489
2	8	6	4	1	9	7	5	3
459	49	3	6	58	7	1	89	2489
379	79	1	5	4	8	2	369	679
478	6	48	3	9	2	58	1	578
389	5	28	7	6	1	389	4	89
	11 - X - 11							d
568	3	58	9	2	4	58	7	1
568 47	3 1	58 4	9 8	2 3	4 6	58 59	7 2	1 59
							-	1
47	1	4	8	3	6	59	2	59
47 68	1 2	4 9	8 1	3 7	6 5	59 4	2 368	59 68
47 68 1459	1 2 49	4 9 7	8 1 2	3 7 58	6 5 3	59 4 6	2 368 89	59 68 489
47 68 1459 2	1 2 49 8	4 9 7 6	8 1 2 4	3 7 58 1	6 5 3 9	59 4 6 7	2 368 89 5	59 68 489 3
47 68 1459 2 459	1 2 49 8 49	4 9 7 6 3	8 1 2 4 6	3 7 58 1 58	6 5 3 9 7	59 4 6 7 1	2 368 89 5 89	59 68 489 3 2489

Thus we will perform this by -

Input -

(e = {{{5, 6, 8}, 3, {5, 8}, 9, 2, 4, {5, 8}, 7, 1}, {{4, 7}, 1, 4, 8, 3, 6, {5, 9}, 2, {5, 9}},
{{6, 8}, 2, 9, 1, 7, 5, 4, {3, 6, 8}, {6, 8}},
{{1, 4, 5, 9}, {4, 9}, 7, 2, {5, 8}, 3, 6, {8, 9}, {4, 8, 9}}, {2, 8, 6, 4, 1, 9, 7, 5, 3},
{{4, 5, 9}, {4, 9}, 3, 6, {5, 8}, 7, 1, {8, 9}, {2, 4, 8, 9}},
{{3, 7, 9}, {7, 9}, 1, 5, 4, 8, 2, {3, 6, 9}, {6, 7, 9}},
{{4, 7, 8}, 6, {4, 8}, 3, 9, 2, {5, 8}, 1, {5, 7, 8}},
{{3, 8, 9}, 5, {2, 8}, 7, 6, 1, {3, 8, 9}, 4, {8, 9}}}

Output -

568	3	58	9	2	4	58	7	1
47	1	4	8	3	6	59	2	59
68	2	9	1	7	5	4	368	68
1459	49	7	2	58	3	6	89	489
2	8	6	4	1	9	7	5	3
459	49	3	6	58	7	1	89	2489
379	79	1	5	4	8	2	369	679
478	6	48	3	9	2	58	1	578
389	5	28	7	6	1	389	4	89

Then we use **FixedPoint** again and display the result.

<u>Input -</u>

FixedPoint[DeleteSingletonsFromLists, e] // display

Output -

6	3	5	9	2	4	8	7	1
7	1	4	8	3	6	9	2	5
8	2	9	1	7	5	4	3	6
1	9	7	2	5	3	6	8	4
2	8	6	4	1	9	7	5	3
5	4	3	6	8	7	1	9	2
3	7	1	5	4	8	2	6	9
4	6	8	3	9	2	5	1	7
9	5	2	7	6	1	3	4	8
	7 8 1 2 5 3	7 1 8 2 1 9 2 8 5 4 3 7 4 6	7 1 4 8 2 9 1 9 7 2 8 6 5 4 3 3 7 1 4 6 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

We are done!

To Have a view on Mathematica -

https://www.wolframcloud.com/ obj/847f2668-cbfe-4bda-a0dc-7289dc271a96

THANK YOU