

What is uniform convergence ? Let A be a non empty subset of R. A sequence of function ; fn : A -> R is said to converge uniformly on A to a function f if and only if for every $\varepsilon > 0$, there is an Natural number N such that For every $n \ge N$ implies $|fn(x) - f(x)| < \varepsilon$

[Table[expr,n]] – generates a list of n copies of expression. PlotStyle - PlotStyle is an option for plotting and related functions that specifies styles in which objects are to be drawn.

EANINGS.

be displayed.

(Where opacity is defined as the quality of being difficult to see through; the fact of being opaque)

 Epilog- Is an option for graphics functions that gives a list of graphics primitives to be rendered after the main part of the graphics is rendered. **Opacity**[*value*] – Is a graphics directive that specifies that graphical objects that follow are to

gray level given.

• EdgeForm[g]- Is a graphics directive that specifies that edges of polygons and other filled graphics objects are to be drawn using the graphics directive or list of directives g. GrayLevel[*level*]- Is a graphics directive specifying that objects that follow are to be displayed in the

Rectangle[{x_{min},y_{min}},{x_{max},y_{max}}] i.e. represents an axis-aligned filled rectangle from {x_{min},y_{min}} to {x_{max},y_{max}}.

In[12]= Graphics[{Red, Rectangle[{0, 0}, {4, 0.5}]}]

Manipulate [Plot[Table [function , {variable , maximum value } , { x axis range} , Plot Range-> {y axis range }, Plot Style-> {color of the plot lines , thickness} , Epilog-> {Opacity [value] , color of the Rectangle , Edge Form[Gray Level[level]], Rectangle[{x axis, y axis}]}] $\{m, \min, \max, step size, Appearance \rightarrow "Labeled"\},\$ $\{\varepsilon, \min, \max, step size, Appearance \rightarrow "Labeled"\},$ $\{a, min, max, Appearance \rightarrow "Labeled"\},\$ $\{I, \min, \max, Appearance \rightarrow "Labeled"\}\}$

$Fn(x) = \sqrt{x^2 + 1/n^2}$ Which is point wise convergent to |x| for every x belonging to R.

To understand the embedded commands, let's consider an example.

In[1]= Manipulate[Plot[Table[Sqrt[x^2+(1/n^2)], {n, m}], {x, -5, 5}, PlotRange → {-2, 2}, PlotStyle → {Magenta, Thick}, Epilog → {Opacity[.5], LightOrange, EdgeForm[GrayLevel[0.5]], Rectangle[{-a, l - c}, {a, l + c}]}] 5, 0.01, Appearance → "Labeled"}, {l, 0, 2, 0.01}]

{m, 1, 40, 1, Appearance → "Labeled"}, {€, 0.01, 0.5, 0.001, Appearance → "Labeled"}, {a, 0,

The given sequence of function converges uniformly to the function f(x)=0 for every x belonging to R.

CONCLUSION

CLIC HERE TO GET INTO MY MATHEMATICA PRESENTATION:

