

Tanya Gupta

MAT/19/73

PRESENTATION

SEC-2 : Computer Algebra Systems & Related Softwares

<u>TOPIC : FUNCTIONS AND THEIR</u> <u>GRAPHS</u>

Functions in Mathematica

Built-in Functions

- Mathematica contains many built-in functions. In Mathematica, every built-in function name begins with capital letter. Arguments of functions follow in square brackets.
- Example:-

```
In[1]:= Sin[Pi/2]
Out[1]= 1
In[2]:= Log[1]
Out[2]= 0
```

Defining your own functions

- You can define your own function in Mathematica. The name of the function should be lowercase letter or a word that begins with lowercase letter.
- Example:-

 $\ln[3]:= f[x_] := x^2$

This function will take an input x, and output x^2

In[5]:= f[15]

Out[5]= 225

In[6]:= f[100]

Out[6]= 10 000

How to define a Function?

Plotting a Function

Mathematica offers many graphing options. You can create graph of

functions using Mathematica's Plot command.

The Plot command takes 2 arguments, separated by comma

- 1. The function to be graphed.
- 2. <u>Iterator</u> :- Specifies the domain over which the plot will be constructed i.e. in this case {x,-10,10}

Mathematica gives you the power to customize every aspect of the styling of your plots. There are over 50 options for plot command

AspectRatio	specifies the ratio of height to width for a plot
• Axes	specifies whether axes should be drawn.
Frame	Replace axes with a frame around entire graph
PlotLabel	specifies an overall label for a plot.
PlotLabels	specifies what labels to use for each curve for
	visualization of functions
PlotLegends	specifies what legends to use for each curve
PlotRange	specifies what range of coordinates to include in
	a plot
PlotStyle	graphics directives to specify the style for each
	curve. The PlotStyle option may be set to any
	single graphic directive . Multiple graphic
	directive should be wrapped in Directive
	command
PlotPoints	specifies how many initial sample points to use.
AxesLabel	Labels can be added to the axes via this option

In[31]:= Plot[{Sin[x]^2, Cos[x]^2}, {x, -2Pi, 2Pi}, AspectRatio → 2/3, Axes → True, PlotStyle → {{Blue, Thick}, {Purple, Dotted, Thick}}, PlotLabels → {"Sin[x]^2", "Cos[x]^2"}, PlotLegends → "Expressions", AxesLabel → {x, y}]

The Manipulate command is used to manipulate an expression in real time using mouse. The output you get from evaluating a Manipulate command is an interactive object containing one or more controls (sliders, etc.) that you can use to vary the value of one or more parameters.

In[25]:= Manipulate[x^3, {x, 0, 100, 3}]

Note: The Manipulate command in its most basic form takes 2 arguments , separated by comma are: 1.Describes the expression to be manipulated 2.An Iterator

In[27]:= Manipulate[Plot[Sin[4/x]+Cos[4/x],

 $\{x, 0, u\}$], $\{u, 0.1, 2\}$]

In this example, we make a plot of the function Sin[4/x] + Cos[4/x] , the right endpoint of which is controlled with a slider, while the left end point is fixed at 0