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TOPICS:

 MATRICES.

 PERFORMING GAUSSIAN ELIMINATION.
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 VECTOR SPACES.

 EIGEN VALUES AND EIGEN VECTORS.

MATRICES

Matrices are denoted by capital letters, but in Mathematica we use lowercase letters, since 

capitals are reserved for built-in functions.

In[3]:= mat1 = {{2, 3, 4, 5, 6, 7}, {1, 1, 1, 1, 1, 1},

{4, 5, 4, 5, 4, 5}, {11, 2, 2, 2, 2, 2}, {0, 0, 0, 0, 1}}

Out[3]= {{2, 3, 4, 5, 6, 7}, {1, 1, 1, 1, 1, 1}, {4, 5, 4, 5, 4, 5}, {11, 2, 2, 2, 2, 2}, {0, 0, 0, 0, 1}}

Here each row is enclosed in curly brackets with entries separately by  commas, the rows 

are separately by commas,the entire matrix is enclosed in curly brackets.

The command MatrixForm will produce nicely formatted rectangular array with bracket-

son the sides. MatrixForm command is used we want a nice look of the matrix:

In[1]:= mat2 = {{1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 10}}

Out[1]= {{1, 2, 3, 4}, {4, 5, 6, 7}, {7, 8, 9, 10}}



In[2]:= mat2 // MatrixForm

Out[2]//MatrixForm= 

1 2 3 4

4 5 6 7

7 8 9 10

$Post is a global variable whose value, if set, is a function that will be applied to every 

output generated in the current session. The simplest setting would be something like 

$Post:=MatrixForm , which would put every output cell into MatrixForm. The command 

If[MatrixQ[#], MatrixForm[#], #]&  is an example of something called a pure function. 

In[4]:= $Post := If[MatrixQ [#], MatrixForm [#], #] &

In[6]:= mat2

Out[6]//MatrixForm= 

1 2 3 4

4 5 6 7

7 8 9 10

Dimensions command returns a list containing the number of rows and columns in the 

matrix.

In[11]:= Dimensions [mat2 ]

Out[11]= {3, 4}

To get a 3 X 4 matrix with random integer entries we write: 

In[12]:= RandomInteger [40, {3, 4}]

Out[12]//MatrixForm= 

28 20 40 1

33 27 9 7

26 8 3 20

The Array command works much like the Table command but uses a function (either built-

in or user-defined) rather than an expression to compute the entries. For a function f that 

takes two arguments, the command Array[f, {m, n}] gives the mln matrix whose i, j th entry 

is f (i, j). For example, using the built-in function Min for f produces a matrix where each 

entry is the minimum of the row number and column number of that entry’s position:

In[13]:= Array [Min, {4, 5}]

Out[13]//MatrixForm= 

1 1 1 1 1

1 2 2 2 2

1 2 3 3 3

1 2 3 4 4

In[14]:= Clear [f]

In[19]:= f[i_, j_] := i^3 + j^2;
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In[20]:= Array [f, {2, 3}]

Out[20]//MatrixForm= 

2 5 10

9 12 17

We can use the Array command to produce a general 3X4 matrix whose i, jth entry (the 

entry in row i and column j) is a_ij.

In[23]:= IdentityMatrix [4]

Out[23]//MatrixForm= 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

In[24]:= DiagonalMatrix [{a, b, c, d}]

Out[24]//MatrixForm= 

a 0 0 0

0 b 0 0

0 0 c 0

0 0 0 d

PERFORMING GAUSSIAN ELIMINATION

A matrix is in reduced row echelon form if the first nonzero entry in each row is a 1 with 

only 0 above and beneath it. Furthermore, the rows must be arranged so that if one row 

begins with more 0s than another, then that row appears beneath the other. Any matrix 

can be put into reduced row echelon form by performing successive elementary row 

operations: multiplying a row by a nonzero constant, replacing a row by its sum with a 

multiple of another row, or interchanging two rows.

In[25]:= mat = {{1, 1, 4, 25}, {2, 1, 0, 7}, {-3, 0, 1, -1}}

Out[25]//MatrixForm= 

1 1 4 25

2 1 0 7

-3 0 1 -1

In[26]:= RowReduce [mat]

Out[26]//MatrixForm= 

1 0 0 2

0 1 0 3

0 0 1 5

MATRIX OPERATION

If two matrices have the same dimensions, we can compute their sum by adding the 

corresponding entries of the two matrices. In Mathematica, as in ordinary mathematical 

notation, we use the + operator for matrix sums:
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In[28]:= mat3 = {{1, 0, 0}, {2, 3, 4}, {-1, 5, -1}};

In[29]:= mat4 = {{2, 2, 3}, {0, 0, 1}, {5, 5, 5}};

In[30]:= mat3 + mat4

Out[30]//MatrixForm= 

3 2 3

2 3 5

4 10 4

In[31]:= mat3 + mat4

Out[31]//MatrixForm= 

3 2 3

2 3 5

4 10 4

Scalar Multiplication:

In[32]:= 5 * mat3

Out[32]//MatrixForm= 

5 0 0

10 15 20

-5 25 -5

The i, jth entry of the product of the matrix a with the matrix b is the dot product of the   row of a with 

the j th column of b. Multiplication is only possible if the number of columns of a is equal to the number 

of rows of b.

In[33]:= mat3.mat4

Out[33]//MatrixForm= 

2 2 3

24 24 29

-7 -7 -3

The symbol * will simply multiply corresponding entries in the two matrices.mat3*mat4

In[36]:= mat3 * mat4

Out[36]//MatrixForm= 

2 0 0

0 0 4

-5 25 -5

The Transpose command will produce the transpose of a matrix , the matrix obtained by 

switching the rows and columns of that matrix:

In[37]:= Transpose [mat3 ]

Out[37]//MatrixForm= 

1 2 -1

0 3 5

0 4 -1

To find a power of a matrix use the command MatrixPower. The first argument is the 
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matrix, and the second argument is the desired power:

In[38]:= MatrixPower [mat3, 10]

Out[38]//MatrixForm= 

1 0 0

10 249 364 36 166 989 20 498 728

7 834 130 25 623 410 15 668 261

The inverse of a square matrix, if it exists, is the matrix whose product with the original 

matrix is the identity matrix. A matrix that has an inverse is said to be nonsingular. You

can find the inverse of a nonsingular matrix with the Inverse command:

In[39]:= Inverse [mat3 ]

Out[39]//MatrixForm= 

1 0 0

2

23

1

23

4

23

-
13

23

5

23
-

3

23

The determinant of a square matrix is a number that is nonzero if and only if the matrix is 

nonsingular.

In[40]:= Det[mat3 ]

Out[40]= -23

The trace of a matrix is the sum of the entries along the main diagonal. The trace of a 

matrix may be calculated with the command Tr:

In[41]:= Tr[mat4 ]

Out[41]= 7

In[47]:= s4 = SparseArray [{{1, 1} → a, {2, 3} → b, {5, 2} → c}, {5, 5}, 2]

MINORS AND COFACTORS

If A is a square matrix then the minor Mij of entry aij is the determinant of the submatrix that remains 

after the ith row and jth column are deleted from A . M = (Mij) is the matrix of minors . But the command 

Minors will return a matrix whose ijth entry is the determinant of the submatrix that remains after the 

(n - i + 1)st row and (n - j + 1)st column are deleted from A . 

In[1]:= Clear [a];

mat5 = Array [a_ ## &, {3, 3}];

mat5 // MatrixForm

Out[3]//MatrixForm= 

a_ 2 a_ 3 a_

2 a_ 4 a_ 6 a_

3 a_ 6 a_ 9 a_

This is the matrix returned by the built in Minors command :
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In[4]:= Minors [mat5 ] // MatrixForm

Out[4]//MatrixForm= 

0 0 0

0 0 0

0 0 0

The custom command below will give us the traditional matrix of minors . 

In[5]:= minorsMatrix [m_List?MatrixQ ] := Map[Reverse, Minors [m], {0, 1}]

In[6]:= minorsMatrix [mat5 ] // MatrixForm

Out[6]//MatrixForm= 

0 0 0

0 0 0

0 0 0

To get a single minor say M23 we can simply ask for that entry from the output of the minorsMatrix 

command : 

In[7]:= minorsMatrix [mat5 ][[2, 3]]

Out[7]= 0

The matrix of cofactors is the matrix whose ijth entry is (-1)^(i+j) Mij . We can use minorsMatrix com-

mand to compute a matrix of cofactors .

In[8]:= cofactorsMatrix [m_List?MatrixQ ] :=

Table [(1)^ (i + j), {i, Length [m]}, {j, Length [m]}] * minorsMatrix [m]

In[9]:= cofactorsMatrix [mat5 ] // MatrixForm

Out[9]//MatrixForm= 

0 0 0

0 0 0

0 0 0

Relationship between Inverse of a matrix and its adjoint : 

A^(-1) = 1/det(A) * adj(A).

In[13]:= Clear [mat];

mat = RandomInteger [9, {4, 4}];

mat // MatrixForm

Out[15]//MatrixForm= 

5 9 6 4

5 6 4 1

4 5 7 2

7 8 4 1
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In[16]:= (1 / Det[mat]) Transpose [cofactorsMatrix [mat]] // MatrixForm

Out[16]//MatrixForm= 

-
1

10

87

20
1 -

11

4

-
1

10

77

20
1 -

9

4

-
1

10
-

23

20
0

3

4

-
3

10
-

99

20
-1

11

4

In[7]:= %.mat // MatrixForm

Out[7]//MatrixForm= 

{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}.mat

WORKING WITH LARGE MATRICES

A large matrix with only a few nonzero entries you can use the SparseArray command to 

enter, store, and work with the matrix efficiently. To create a SparseArray simply give the 

position and value for each nonzero entry of the matrix as follows:

In[1]:= s1 = SparseArray [{{1, 1} → a, {2, 3} → b, {5, 2} → c, {6, 7} → d}]

Out[1]= SparseArray  Specified elements : 4

Dimensions : {6, 7}


In[2]:= s1 // MatrixForm

Out[2]//MatrixForm= 

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

In[3]:= s2 = SparseArray [{{1, 1}, {2, 3}, {5, 2}, {6, 7}} → {a, b, c, d}]

Out[3]= SparseArray  Specified elements : 4

Dimensions : {6, 7}


In[6]:= s2 // MatrixForm

Out[6]//MatrixForm= 

a 0 0 0 0 0 0

0 0 b 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 c 0 0 0 0 0

0 0 0 0 0 0 d

    7



In[7]:= s3 = SparseArray [{{1, 1}, {2, 3}, {5, 2}, {6, 7}} → {a, b, c, d}, {8, 10}]

Out[7]= SparseArray  Specified elements : 4

Dimensions : {8, 10}


In[8]:= s3 // MatrixForm

Out[8]//MatrixForm= 

a 0 0 0 0 0 0 0 0 0

0 0 b 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 d 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

In[9]:= s4 = SparseArray [{{1, 1} → a, {2, 3} → b, {5, 2} → c}, {5, 5}, 2]

Out[9]= SparseArray  Specified elements : 3

Dimensions : {5, 5}

Default : 2



In[10]:= s4 // MatrixForm

Out[10]//MatrixForm= 

a 2 2 2 2

2 2 b 2 2

2 2 2 2 2

2 2 2 2 2

2 c 2 2 2

Large matrix makes a mess if we ask for a numerical output, but a picture can tell us a lot 

about our matrix. The plots will automatically color entries with larger values in a dark 

color.
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In[11]:= MatrixPlot [s3]

Out[11]= 

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

SOLVING SYSTEM OF LINEAR EQUATIONS

Nonhomogeneous Systems of Linear Equations:

To solve a system of linear equations in the form m x =b, where m is the coefficient matrix, x is a column 

vector of variables, and b is a column vector. Such a system is called nonhomogeneous when b is a 

vector with at least one nonzero entry. Mathematica offers several options for solving such a system, 

and we will explore each in turn. In this first example m is a nonsingular matrix and the system has a 

unique solution. Enter the equation m x= b by typing m.x==b. Note how Mathematica interprets this 

equation:

In[47]:= m = {{1, 5, -4, 1}, {3, 4, -1, 2}, {3, 2, 1, 5}, {0, -6, 7, 1}};

x = {x1, x2, x3, x4};

In[53]:= b = {{1}, {2}, {3}, {4}};

In[54]:= m.x == b

Out[54]= {x1 + 5 x2 - 4 x3 + x4, 3 x1 + 4 x2 - x3 + 2 x4, 3 x1 + 2 x2 + x3 + 5 x4, -6 x2 + 7 x3 + x4} ⩵
{{1}, {2}, {3}, {4}}

We can interpret this as a list of four linear equations , each in four variables : 

To check that m  is nonsingular : 

In[51]:= Det[m]

Out[51]= 35

To form the augmented matrix we use the ArrayFlatten command and to find the row reduced echelon 

form of the matrix use RowReduce command.
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In[55]:= ArrayFlatten [{{m, b}}] // MatrixForm

Out[55]//MatrixForm= 

1 5 -4 1 1

3 4 -1 2 2

3 2 1 5 3

0 -6 7 1 4

In[56]:= RowReduce [%] // MatrixForm

Out[56]//MatrixForm= 

1 0 0 0 -
127

35

0 1 0 0
141

35

0 0 1 0
139

35

0 0 0 1
13

35

The command LinearSolve provides a quick means for solving systems that have a single solution : 

In[57]:= LinearSolve [m, b]

Out[57]= -
127

35
, 

141

35
, 

139

35
, 

13

35


LinearSolve command also used to form a function for matrix m  that can be applied to any vector b.

In[60]:= Clear [f]

f = LinearSolve [m]

Out[61]= LinearSolveFunction  -1 Matrix dimensions : {4, 4} 

In[62]:= f[b]

Out[62]= -
127

35
, 

141

35
, 

139

35
, 

13

35


Or we can solve the system m x = b for x by multiplying both sides on the left by m^(-1) , to get x = 

m(-1)b.

In[63]:= Inverse [m].b

Out[63]= -
127

35
, 

141

35
, 

139

35
, 

13

35


Now use the command Solve to this system. When we use the Table/Matrix New... dialogue box to 

create m  , x , and b both mx and b are lists of lists. The Solve command takes a list of equations as its 

first argument and a list of variables as its second argument -- it unfortunately cannot accept lists of 

lists . There is a simple solution . We will have to re-enter x and b without using the Table/Matrix New... 

dialogue box , expressing each as a single list . Then the equation mx = b is acceptable as input to the 

Solve command . 
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In[69]:= Clear [x, b];

x = {x1, x2, x3, x4};

b = {1, 2, 3, 4};

m.x == b

Out[72]= {x1 + 5 x2 - 4 x3 + x4, 3 x1 + 4 x2 - x3 + 2 x4, 3 x1 + 2 x2 + x3 + 5 x4, -6 x2 + 7 x3 + x4} ⩵ {1, 2, 3, 4}

In[73]:= Solve [m.x == b, x]

Out[73]= x1 → -
127

35
, x2 →

141

35
, x3 →

139

35
, x4 →

13

35


As inconsistent system of equations has no solutions. If we use Solve command on this type of system , 

the output will be an empty set of curly brackets : 

In[74]:= Clear [m, x, b]

In[77]:= m = {{1, 1, 1}, {1, 1, 1}, {1, -1, -1}};

x = {x1, x2, x3};

b = {1, 2, -1};

Solve [m.x == b, x]

Out[80]= {}

If we row reduce , we can see the inconsistency in the system : 

In[19]:= ArrayFlatten [{{m, Transpose [{b}]}}]

Out[19]= {{1, 1, 1, 1}, {1, 1, 1, 2}, {1, -1, -1, -1}}

In[20]:= RowReduce [%] // MatrixForm

Out[20]//MatrixForm= 

1 0 0 0

0 1 1 0

0 0 0 1

The last row represents the impossible equation 0 = 1 .

If we use the LinearSolve command with an inconsistent system you will be told off : 

In[81]:= LinearSolve [m, b]

Out[81]= LinearSolve [{{1, 1, 1}, {1, 1, 1}, {1, -1, -1}}, {1, 2, -1}]

And if we find the inverse of m we will me told off again: 

In[22]:= Inverse [m].b

Out[22]= Inverse [{{1, 1, 1}, {1, 1, 1}, {1, -1, -1}}].{1, 2, -1}

The remaining possibility for a system of equations is that there are an infinite number of solutions . 

The Solve command displays the solution set in this situation .
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In[82]:= Clear [m, x, b];

m = {{2, 3, -4}, {4, 6, -8}, {1, -1, -1}};

x = {x1, x2, x3};

b = {8, 16, 1};

Solve [m.x == b, x]

Out[86]= x2 →
4

7
+
2 x1

7
, x3 → -

11

7
+
5 x1

7


In a system having an infinite number of solutions it will return only one of them , giving no warning 

that there are others . In this example it returns only the solution where x3 = 0 :  

In[26]:= LinearSolve [m, b]

Out[26]= 
11

5
,
6

5
, 0

Row reduction gives the solution with little possibility for confusion : 

In[27]:= ArrayFlatten [{{m, Transpose [{b}]}}]

Out[27]= {{2, 3, -4, 8}, {4, 6, -8, 16}, {1, -1, -1, 1}}

In[28]:= RowReduce [%] // MatrixForm

Out[28]//MatrixForm= 

1 0 -
7

5

11

5

0 1 -
2

5

6

5

0 0 0 0

Thus for each value assumed by x3 , there is a solution with x1 = 
11

5
 + 

7

5
 x3 , and x2 = 

6

5
 + 

2

5
 x3. 

In short we have to be very careful while using the command LinearSolve unless we know that we have 

a nonsingular matrix and have a single solution . to check this we can use the Det command keeping in 

mind that a singular matrix has determinant zero .  

Homogeneous Systems of Equations :

A system of equations of the form mx = 0 , where m  is the coefficient matrix , x is a column vector of 

variables and 0 is the zero vector is called homogeneous . Note that x = 0 is a solution to any homoge-

neous system . Now assume that m  is a square matrix . The system of linear equation has a solution if 

and only if m  is nonsingular . A homogeneous system will have only the trivial solution x = 0  , while if m  

is singular the system will have an infinite number of solutions . The set of all solutions to a homoge-

neous system is called the null space of m : 

12     



In[93]:= Clear [m, x, b];

m = {{0, 2, 2, 4}, {1, 0, -1, -3}, {2, 3, 1, 1}, {-2, 1, 3, -2}};

x = {x1, x2, x3, x4};

b = {{0}, {0}, {0}, {0}};

Det[m]

Out[97]= 0

In[98]:= RowReduce [ArrayFlatten [{{m, b}}]] // MatrixForm

Out[98]//MatrixForm= 

1 0 -1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0

This reduced form of the augmented matrix tells us that x1 = x3 , x2 = -x3 and x4 = 0 . That is any vector 

of the form (t , -t , t , 0) where t is a real number  is a solution and the vector (1 , -1 , 1 , 0) forms a basis 

for the solution space .

The command NullSpace gives a set of basis vector for the solution space of the homogeneous equa-

tion mx = b .

In[32]:= NullSpace [m]

Out[32]= {{1, -1, 1, 0}}

USING LINEAR SOLVE AND NULLSPACE TO SOLVE THE NONHOMOGENEOUS SYSTEMS 

We know that the LinearSolve command will only return one solution when a matrix equation mx = b 

has an infinite number of solutions . If we were to take the sum of the solution vector provided by 

LinearSolve with any vector in the null space of m  , we would get another solution vector.

In[33]:= Clear [m, b];

m = {{0, 2, 2, 4}, {1, 0, -1, -3}, {2, 3, 1, 1}}; b = {2, 0, 0};

LinearSolve [m, b]

Out[35]= {-9, 7, 0, -3}

In[36]:= NullSpace [m]

Out[36]= {{1, -1, 1, 0}}

This show that there are number of infinite solutions . For each number of t , there is a solution (-9 , 7 , 0 

, -3) + t (1 , -1 , 1 , 0) or x1 = -9 + t , x2 = 7-t , x3 = t and x4 = -3 . 

In[99]:= RowReduce [ArrayFlatten [{{m, b}}]] // MatrixForm

Out[99]//MatrixForm= 

1 0 -1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0
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VECTOR SPACES 

Span and Linear Independence : 

Suppose we are given a set {v1 , v2 , v3 , ......., vn } of vectors . Any vector that can be expressed in the 

form a1v1 + a2v2 + a3v3 +.......+ anvn is said to be in the span of the vectors v1 , v2 , v3, ......,vn 

where the coefficients ai are scalars .

We can determine whether a given vector b is in the span of the vectors  v1 , v2 , v3, ......,vn by letting 

m  be the matrix whose columns are  v1 , v2 , v3, ......,vn and then determining whether the equation 

mx = b has a solution . A solution x if exists provides values for the scalars ai . 

For example , in real three space , is the vector b = (1,2,3) in the span of the vectors v1 = (10,4,5) , v2 = 

(4,4,7) , v3 = (8,1,0) ?

In[1]:= Clear [v1, v2, v, b, m, c];

v1 = {10, 4, 5};

v2 = {4, 4, 7};

v3 = {8, 1, 0};

b = {1, 2, 3};

m = Transpose [{v1, v2, v3}];

c = LinearSolve [m, b]

Out[7]= 
3

2
, -

9

14
, -

10

7


We can check that 
3

2
 v1 - 

9

14
 v2 - 

10

7
 v3 = b. 

In[8]:= c[[1]] v1 + c[[2]] v2 + c[[3]] v3

Out[8]= {1, 2, 3}

A set of vectors {v1 , v2 , v3 , ....., vn } is said to be linearly independent if every vector in their span can 

be expressed in a unique way as a linear combination   a1v1 + a2v2 + a3v3 +.......+ anvn . The only way 

to express the zero vector as such a linear combination is to have each coefficient ai = 0 . If it is possible 

to write a1v1 + a2v2 + a3v3 + ......+anvn = 0 with atleast one of the ai ≠ 0 then the set of vectors {v1 , 

v2 , v3 , ..... , vn } is linearly dependent . 

To check whether a set of vectors {v1 , v2 , v3 , ..... , vn } is linearly independent  , let m  be the matrix 

whose columns are v1 , v2, v3, ...., vn and chcek that the equation mx = 0 has the only trivial solution : 

In[9]:= NullSpace [m]

Out[9]= {}

Yes , these are linearly independent vectors . Alternatively , we could check that the matrix whose rows 

are v1 , v2 , v3 , ... , vn is nonsingular : 

In[10]:= Det[{v1, v2, v3}]

Out[10]= 14
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Bases: 

A basis for a vector space is a set of linearly independent vectors whose span includes 

every vector in the vector space. Given a spanning set of vectors �v1, v2, v3, …, vn� for a 

vector space we can easily obtain a basis for that space. Form a matrix whose rows are the 

vectors v1, v2, v3, …, vn and rowreduce:

In[8]:= Clear [v1, v2, v3, v4, m, a, b, c];

v1 = {2, 1, 15, 10, 6};

v2 = {2, -5, -3, -2, 6};

v3 = {0, 5, 15, 10, 0};

v4 = {2, 6, 18, 8, 6};

m = {v1, v2, v3, v4};

RowReduce [m] // MatrixForm

Out[14]//MatrixForm= 

1 0 0 -2 3

0 1 0 -1 0

0 0 1 1 0

0 0 0 0 0

The nonzero rows of this matrix form a basis for the space spanned by the set v1, v2, v3, 

v4. This space is also called the row space of the matrix m .

We can also find a basis consisting of a subset of the original vectors. If we row-reduce the 

matrix whose columns are the vectors v1, v2, v3, …, vn, then the columns containing the 

leading 1s will form a basis for the column space, and the corresponding columns from the 

original matrix will also form a basis for the column space.

In[29]:= Clear [v1, v2, v3, v4, m, a, b, c];

v1 = {2, 1, 15, 10, 6};

v2 = {2, -5, -3, -2, 6};

v3 = {0, 5, 15, 10, 0};

v4 = {2, 6, 18, 8, 6};

m = Transpose [{v1, v2, v3, v4}];

RowReduce [m] // MatrixForm

Out[35]//MatrixForm= 

1 0
5

6
0

0 1 -
5

6
0

0 0 0 1

0 0 0 0

0 0 0 0

The vectors (1, 0, 0, 0, 0) , (0, 1, 0, 0, 0) , and (0, 0, 1, 0, 0) form a basis for the column space of m  . The 

vectors from the same columns in m will also form a basis for the column space . So , v1 , v2 and v4 will 

form a basis for the space spanned by the set {v1, v2, v3, v4} .  
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In[38]:= NullSpace [Transpose [{v1, v2, v4}]]

Out[38]= {}

Rank And Nullity

The dimension of the null space of a matrix is called the nullity of the matrix. We can find 

the nullity by using the Length command to count the vectors in a basis for the null space:

In[39]:= Length [NullSpace [m]]

Out[39]= 1

The rank of a matrix is the common dimension of the row space and the column space. 

The rank plus the nullity must equal the number of columns in a matrix.

In[100]:= MatrixRank [m]

Out[100]= 3

EIGEN VALUES AND EIGEN VECTORS

Finding Eigenvalues and Eigenvectors Automatically

Given an n⨯n matrix m  , the non zero vectors v1 such that mvi = λivi are the eigenvectors of m  and the 

scalars λi are the eigenvalues of m  .There are at most n eigenvalues . 

In[102]:= Clear [m]

In[103]:= m = Array [Min, {2, 2}];

m // MatrixForm

Out[104]//MatrixForm= 

1 1

1 2

To get eigenvalues:

In[105]:= {λ1, λ2} = Eigenvalues [m]

Out[105]= 
1

2
3 + 5 ,

1

2
3 - 5 

To get eigenvectors:

In[106]:= {λ1, λ2} = Eigenvectors [m]

Out[106]= 
1

2
-1 + 5 , 1, 

1

2
-1 - 5 , 1

The command Eigensystem gives both the eigenvalues and the eigenvectors. The output 

is a list whose first item is a list of eigenvalues and whose second item is a list of corre-

sponding eigenvectors:
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In[112]:= Eigensystem [m]

Out[112]= 
1

2
3 + 5 ,

1

2
3 - 5 , 

1

2
-1 + 5 , 1, 

1

2
-1 - 5 , 1

The output of any of these commands be numerical approximations by replacing m with 

N[m]:

In[113]:= Eigensystem [N[m]]

Out[113]= {{2.61803, 0.381966 }, {{0.525731 , 0.850651 }, {-0.850651 , 0.525731 }}}

Even for a simple matrix with integer entries the eigenvalues can be quite complicated 

and involve complex numbers:

In[115]:= Clear [m];

In[116]:= m = Array [Min, {3, 3}];

In[117]:= m // MatrixForm

Out[117]//MatrixForm= 

1 1 1

1 2 2

1 2 3

In[118]:= Eigenvalues [m]

Out[118]=  5.05… , 0.643… , 0.308… 

The eigenvalues here are returned as Root objects . The option setting Cubics -> True will permit the 

display of such roots in terms of radicals . 

In[119]:= Eigenvalues [m, Cubics → True ]

Out[119]= 2 +
723

 3
2
9 + ⅈ 3 13

+

 7
2
9 + ⅈ 3 13

323
, 2 -

723 1 - ⅈ 3 

223 3 9 + ⅈ 3 13
-

1 + ⅈ 3   7
2
9 + ⅈ 3 13

2 × 323
,

2 -

723 1 + ⅈ 3 

223 3 9 + ⅈ 3 13
-

1 - ⅈ 3   7
2
9 + ⅈ 3 13

2 × 323


In[120]:= Eigenvalues [m] // N

Out[120]= {5.04892, 0.643104 , 0.307979 }

Finding Eigenvalues and Eigenvectors Manually

To find the eigenvalues we first form the characteristic polynomial, which is the determi-

nant of the matrix �I �m, where m is a square

matrix, � is an indeterminate, and I is the identity matrix of the same dimensions as m:

In[121]:= Clear [m];
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In[122]:= m = {{2, -1, 0}, {-1, 2, 0}, {0, 0, 3}};

In[123]:= c = Det[λ IdentityMatrix [3] - m]

Out[123]= -9 + 15 λ - 7 λ2 + λ3

Roots of characteristic polynomial:

In[124]:= Solve [c == 0, λ]

Out[124]= {{λ → 1}, {λ → 3}, {λ → 3}}

There are two eigenvalues �λ=1 and λ=3. The eigenvalue 3 is reported twice because it 

occurs twice as a root of the characteristic polynomial c.

In[125]:= Factor [c]

Out[125]= (-3 + λ)2 (-1 + λ)

In[126]:= NullSpace [1 * IdentityMatrix [3] - m]

Out[126]= {{1, 1, 0}}

In[128]:= NullSpace [3 * IdentityMatrix [3] - m]

Out[128]= {{0, 0, 1}, {-1, 1, 0}}

In[129]:= Eigensystem [m]

Out[129]= {{3, 3, 1}, {{0, 0, 1}, {-1, 1, 0}, {1, 1, 0}}}
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