

doi:10.7153/oam-11-38

ISOMETRIC COMPOSITION OPERATORS ON THE FOCK-SPACES

ANURADHA GUPTA AND POOJA SHARMA

(Communicated by R. Curto)

Abstract. In this paper a necessary and sufficient condition for a holomorphic self map ϕ on \mathbb{C}^N to induce an isometric composition operator on the Fock space has been obtained. Some necessary and sufficient conditions for a composition operator C_{ϕ} to be a quasi-isometric and m-isometric have also been explored.

1. Introduction

Let
$$z = (z_1, z_2, \dots, z_N)$$
 and $w = (w_1, w_2, \dots, w_N)$ be points in \mathbb{C}^N , $\langle z, w \rangle = \sum_{k=1}^N z_k \overline{w_k}$

and $|z| = \sqrt{\langle z, z \rangle}$. Let \mathbb{B} denote the open unit ball $\{z : |z| < 1\}$, $S = \partial \mathbb{B}$ the boundary of the unit ball \mathbb{B} , $dm(z) = rdrd\theta$ the Lebesgue area measure on \mathbb{C} , dV(z) the Lebesgue volume measure on \mathbb{C}^N , $V_N = V(\mathbb{B})$, $d\sigma(z)$ the normalized surface measure on S and $H(\mathbb{C}^N)$ the space of all holomorphic functions on \mathbb{C}^N (entire functions). For $p, \alpha \in (0, \infty)$, the Bergman-Fock space[22] $\mathscr{F}^p_{\alpha} = \mathscr{F}^p_{\alpha}(\mathbb{C}^N)$ is the space of all entire functions f for which

$$\|f\|_{\mathcal{F}^p_\alpha}^p = \left(\frac{p\alpha}{2\pi}\right)^N \int_{\mathbb{C}^N} |f(z)|^p e^{-\frac{p\alpha}{2}|z|^2} dV(z) < \infty$$

Note that, by using polar coordinates

$$||I||_{\mathscr{F}^{\rho}_{\alpha}}^{p} = \left(\frac{p\alpha}{2\pi}\right)^{N} V_{N} \int_{0}^{\infty} \int_{S} \rho^{2N-1} e^{-\frac{\alpha\rho}{2}\rho^{2}} d\sigma(\xi) d\rho$$
$$= \frac{(p\alpha)^{N} \int_{0}^{\infty} t^{N-1} e^{-\frac{\alpha\rho}{2}t} dt}{2^{N}(N-1)!} = 1.$$

When $1 \leqslant p < \infty$, the space $\mathscr{F}^p_{\alpha}(\mathbb{C}^N)$ is a Banach space with the norm $\|f\|_{\mathscr{F}^p_{\alpha}}$, while for $p \in (0,1)$, it is an F-space with the translation-invariant metric $d_{\mathscr{F}_{\alpha}^{p}}(f,g) =$ $\|f-g\|_{\mathcal{F}^p_\alpha}^p$. For p=2 the space is reduced to the Fock space, which is a functional Hilbert

space with the inner product

$$\langle f,g\rangle = \left(\frac{\alpha}{\pi}\right)^N \int_{\mathbb{C}^N} f(z) \overline{g(z)} e^{-\alpha |z|^2} dV(z) \,.$$

Mathematics subject classification (2010): 47B33, 46B04, 30H20. Keywords and phrases: Composition operators, isometry, Fock spaces.

587